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Introduction

4

In Newton’s method, for a general nonlinear objective function,
convergence to a solution cannot be guaranteed from an
arbitrary initial pointz©

The idea behind Newton’s method is to locally approximate the
function f/ being minimized, at every iteration, by a quadratic
function. The minimizer for the quadratic approximation is
used as the starting point for the next iteration.

D) = k) — F (g ~1gk
Guarantee that the algorithm has the descent property by
modifying as follows
20 = 20 _ o, P(z®) 1)
whereq, IS chosen to ensure that
fla™) < fz™)



Introduction

» For example, we may cho0osg = arg min,~g f(x® — q, F(x)~1gk)
We can then determine an appropriate valug.of by

performing a line search in the directiof(z")~1g® . Note
that although the line search is simply the minimization of the
real variable functiony,(a) = f(z*) — o, F(z*)~1g") , it is not a

trivial problem to solve.

» A computational drawback of Newton’s method is the need to
evaluateF(z*)) and solve the equatitin®)d" = —g(*) . To
avoid the computation of (z*)~!  , the quasi-Newton methods
use an approximation tB(z*)~!  in place of the true inverse.



Introduction
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Consider the formula

bt = 2®) — o H, g*)
where H, I1samxn matrixand IS a positive search
parameter. Expanding abaxit’ yields

Fla4) = Fla®) +g (@l ) of [+~
= f(z®) — ag®TH,g®™ + o(|| Hrg™ | a)

As o tends to zero, the second term on the right-hand side
dominates the third. Thus, to guarantee a decrease in for
small « , we have to have

g TH .g® > 0
A simple way to ensure this is to require tirat be positive
definite.



Introduction

» Proposition 11.1: Let c ¢! x# e r7 g% = f(z™)#£0 , and
H; ann xn real symmetric positive definite matrix. If we set
r*D) = 20 — o H,g®), Where a; = argmin,sg f(x® — aH g™ ,
thena, >0 and(z*) < f(x®)



———————————————————————————————

Approximating the Inverse Hessian

» LetH,, H,,H,,.. be successive approximations of the inverse
F(z")~1 of the Hessian.

» Suppose first that the Hessian matrix) of the objective
function 7 is constant and independentof . In other words,
the objective function is quadratic, with Hessian
F(x)=Q forallz , where = Q@' . Then,

g+ — glb) — Q(apk+1) — k)
Let

Then, we may write
Agt) = QAx™



g1 — gtk — Q(zth+1) — k)
Approximating the Inverse Hessian

» We start with a real symmetric positive definite mamix
Note that given; , the matrgx-!  satisfies

Q 'Ag") = Azl 0<i<k

» Therefore, we also impose the requirement that the
approximationH,,; of the Hessian satisfy

H,..Agl = Agli) 0<i<k
» If n steps are involved, then moving:;in  directions
Az Az . Az"Y yields
H,Ag" = Az
H,AgV = Az

H,Ag" ) = Agn—V



Approximating the Inverse Hessian

» This set of equations can be represented as

H,[AgV" AgW, ... . Ag" V] = [AzD Ag®) . Agl—l)

Note thatQ satisfies
QA Az . Az D] =[Ag" AgV, ... Ag"~V)

and

Q '[Ag" AgW, ... Ag" V] = [AzO Azl Azt
Therefore, if[Ag”, Ag'V, ..., Agt"~V)] IS nonsingular, hen
determined uniquely after  steps, via

Q '=H,=[Az" Az . Az V[Ag") Agl, ... Ag"—V]!



Approximating the Inverse Hessian

» We conclude that if7,, satisfies the equations
H,Ag" =Ax® 0<i<n-—1
then the algorithng(:+1) = £*) — o, H, g% ,
= argming>o f(x™ — aHg™) s guaranteed to solve problems
with quadratic objective functions mn+1  steps, because the
updater"tt) = £ — o, H,g™ is equivalent to Newton’s
algorithm.



Approximating the Inverse Hessian

» The quasi-Newton algorithms have the form

d¥ = —H,q*
ay = arg mingso f(x® + ad™)

2+ — 20 1 o, d*)

where the matriceg,, H,,...  are symmetric. In the quadratic
case these matrices are required to satisfy

H; 1Ag") = Azl 0<i<k
whereAz® = 2+ — 20 — 4.d" angl’) = gt — gl = QAz
It turns out that quasi-Newton methods are also conjugate
direction methods.
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Approximating the Inverse Hessian

4

Theorem 11.1: Consider a quasi-Newton algorithm applied to a

guadratic function with Hessiap= Q?  such that fok < n — 1
H, Ag¥ =AxD 0<i<k

whereH, = H},, .H, #0 o<i<k ,th@€n. 4+ are

Q-conjugate.

Proof: We proceed by induction. We begin with theg case:

thatd® andiV ar@ -conjugate. Becayseo , We can write
d" = Az /o . Hence, dV7QdY = —gTE,Qd©

but ¢""d" =0 as aconsequence  ; Fr QAa

of oy > 0 being the minimizer of g o

s(a) = f(z© + ad®). Hence, A

d(DTQd(O) — 0 _ _g(l)TAaz(O)

&

— _g(1>Td(0>
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Approximating the Inverse Hessian

» Assume that the result is true for 1 . We now prove that the
result forx , thatis, that”, ... d**Y  a@e -conjugate. If
suffices to show that**7Qd" = 0,0 < i < k . Given < k
using the same algebraic steps as in:the case, and using
the assumption that, £0 , we obtain

d*TQAD — _gU+0TE, L QdY
__gkT gl

Becausel”) ... d¥) afe -conjugate by assumption, we
conclude from Lemma 10.2 thgt+)7d" = ¢ . Hence,
d*VTQd" = 0, which completes the proof.
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The Rank One Correction Formula

» In therank one correction formula, the correction term is
symmetric and has the formz*:*®T | whegre R zdhd R"

The update equation is
H, ,=H;+ akz(k)z(k)T

Note that L

(k)
rank(z(k)z(k)T) = rank( ; {z%k) e zfﬁ}) =1

and hence the namank one correction [also calledsingle-
rank symmetric (SRF) algorithm].

The productz®2"T  is sometimes referred to aslyiduic
product or outer product. Observe that iff, is symmetric,
then so IsH .,
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The Rank One Correction Formula

4

Our goal now is to determine  and’ , giI¥EN Agt) Axlk,
so that the required relationship discussed in Section 11.2 is
satisfied; namelH ., Agl) = Az i =1, ... k

To begin, consider the conditi@,,;Ag"® = Az®) . In other
words, givenH,; Ag® Az® ,we wishtofind  ahd to
ensure that

H, Agh = (H), + apz® 20T\ AgH) = AgF)

First note thak¥TAqg®)  Is a scalar. Thus,
Az®) — H Ag® = (4,2 0T Agh) 28
and hence
L) — Az®) — H . AgW)
ar(zHTAgM)
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H,  Ag¥) = (Hy + apzWzHT)AgH) = Agl¥)
The Rank One Correction Formula

» We can now determine
(Ax™) — H . AgW)(Ax™) — H Ag*NT

(k) 5 ()T _
e ar(z(MTAgk))2
Hence,
Hy = Hyy + (Az®) — H; AgW)(Az®) — H AgW)T

ak(z(k)TAg(k)>2

» The next step is to express the denominator of the second term
on the right-hand side as a function of the given quantities
Hy , Ag® Az®™ . Premultiphpz® — H Ag® = (a,2NTAg*)) 2
by Ag*)T to obtain
AgPTAz® — AgWTH Ag®) = AgT g, 2% 2T A gk)
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The Rank One Correction Formula

» Observe that, Is a scalar and s@8)72%*) = (T Agk)
Thus,
AgFT Az — AgWTH . Ag®) = a;(zMT Agh))?
Taking this relation into account yields
(AxN) — H AgW)(Az™) — [H AgP)T
YAgRT(Axz®) — H ,Ag*))

H;, =H;+
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Rank One Algorithm

» 1. Setk =0 ;select®  and a real symmetric positive defipite
2.1f g =0 , stop; elsed® = —H,g*
3. Compute

vV Vv

Qf = arg Hliﬂazo f(m(k) + O{d(k))
2+ = 20 4 o, d®

v

4. Compute Az — o, d®
Agh) = gl+1) _ g(®
(Ax™) — HAgW)(Ax™) — H AgM)T
k

Hy, - H
e = AgPIT(Ag(h) — HkAg< )

v

5.Setk:=k+1 ; go to step 2.
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Rank One Algorithm

» However, what we want i#, . ,Ag") = Ax® i =1,... k

» Theorem 11.2: For the rank one algorithm applied to the
guadratic with Hessiam = Q7 , we hatg ,Ag" = Azl
0<i<k

» Proof.
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Example

» Let f(z1,22) =27+ 323+3 . Apply the rank one correction
algorithm to minimizef . Use® =[1,2]"  adg=1I,

» We can represent as

flz) = 52T [g (1)] T + 3

Thus, gt — [g (1)] %)

BecauseH, =1, d" = —g» =[-2, -9
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Example

» The objective function is quadratic, and hence

(Qrg = arg milgy>q f(w(o) + ad(o))

2
- gorge B H E
—dTQd" 20l [2] 3

and thusz® = z© + q,d = [-1 27
We then compute

Az = apd? = [, ="

g = Qal) —[-3.3"
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Example

» Because

We obtain

0 0 0 )AVA
H.— H,+ (Az) — HyAg' ))O(Aw< ) — HoyAg"))" lé o]

Therefore,
4= Hig = [}
g7
= g !
We now computer® =z + a;dY = [0, 0]”

Note thatg'® =0 , and therefat& = z*

algorithm solves the problem in two steps.

Note that the directiong”). d'!)  afe conjugate, in accordance with
21 Theorem 11.1.

. As expected, the



The Rank One Correction Formula

» Unfortunately, the rank one correction algorithm is not very
satisfactory for several reasons.

The matrix H,,; thatthe rank one algorithemgrates may not be
positive definite and thud**>  may not keeacent direction. This
happens even in the quadratic case.

If Ag®HT(Az® — H, .Ag*))  iBse to zero, then there may be
numerical problems in evaluating .,

» Fortunately, alternative algorithms have been developed for
updatingH, . In particular, if we use a “rank two” update, then
H, IS guaranteed to be positive definite foriall , provided that
the line search is exact.

22



The DFP Algorithm

» This algorithm was developed by Davidon (1959), Fletcher,
and Powell (1963).

» The DFP algorithm is also known as traeiable metric
algorithm.
» DFP Algorithm
1. Setk =0 ;seleaf®  and a real sytrimpositive definiteH
2. 1f g¥) =0 , stop; els&l™ = —H,g*
3. Compute oy = arg mingsg f(z® + ad™)
2+ — g0 4 o, d®)

4. Compute

Az = q . d%)
Agh) = glk+1) — (kb
AxFAzx®T  [H .AgW [ H .Ag™|T

Hier = Hi Ax®TAgR) — AgOTH, Ag®)

22 5.Setk:=k+1 ;gotostep 2.




The DFP Algorithm

» Theorem 11.3: In the DFP algorithm applied to the quadratic
with Hessiarg = @7 , we havg,, Agl) = Az 0<§<k

» Theorem 11.4: Suppose that - o . In the DFP algorithm, if
H, is positive definite, then so B,
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Example

oL 1 _
» Locate the minimizer oﬂ(m)ziazT [4 2] :I:—a’:T[ !

Use the initial pointe® = (0,01 amd, = I,
» Note that in this case
42 —1
(k) — (k) _
= |s 3= [
Hence, ¢ =1, —1]7

O _ oo 1017 _[-1
o =-ma” = |, [ = [

Becauseg Is a quadratic function,
g7 g

N d(O)TQd(O) -

ap = arg mingsg f(x® + ad?) =

25
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Example

» ThereforegV) = 20 + qd” = [-1,1]7
» We then computenz©® = z1) — 20 = [—1 1]7

bl []-

11
() A (0T _
Az®Ag [_1 1]
Aw(O)TAq(O) — 2
HoAgl) — [—02]



Hl_:HO AzOTAGO) — — AgOTH,AgO
Cfrol o[t —1] J[40
o1 2[-1 1] {00
!
=14 4
| 2 2
» We now computel'V) = —H,¢gV =[0,1Y  and
LmTgh
_ - (1) Wy _ __ 9 _ -
ap = argming>g f(x" + ad") d0TQam 2
Hencegz® = 20 + qpdV) = [-1,3/2]" = «* , because isa
guadratic function of two variables.
» Note that we have""Qd" = dM7Qd") =0 - that'is, and

dY areq -conjugate directions.
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The DFP Algorithm

» The DFP algorithm is superior to the rank one algorithm in that
It preserves the positive definitenessnf

» However, it turns out that in the case of larger nonquadratic
problems the algorithm has the tendency of sometimes getting

stuck. This phenomenon is attributedg becoming nearly
singular.

28



The BFGS Algorithm

» Suggested by Broyden, Fletcher, Goldfarb, and Shanno.

» Recall that the updating formulas for the approximation of the
Inverse of the Hessian matrix were based on satisfying the
equations | |

H,.,Ag" = Azl 0<i<k

which were derived fromg!) = QAz" 05 i<k . We then

formulated update formulas for the approximations to the

Inverse of the Hessian matrgx!

» An alternative to approximating—! Is to approxin@te itself.

29



The BFGS Algorithm

4

Let B, be ourestimate @f atthe th step. We reguire to
satisfyAgl) = B, Azl 0,<i <k

Notice that this set of equations is similar to the previous set of
equations foH,., , the only difference being that the roles of
Az andAg) are interchanged.

Given any update formula fef,,  , a corresponding update
formula forB, can be found by interchanging the roles,of

and H, andof\g® andz®* . In particular, the BFGS update
for B, corresponds to the DFP updatefnr . Formulas
related in this way are said to Geal or complementary.

30



The BFGS Algorithm

» Recall that the DFP update for the approximatpn of the

Inverse Hessian is
FpDFP A F) A (k)T [HkAg““)][HkAg(k)}T

i1 = Hit Ax®TAGE) — — AgWTH, Ag
» Using the complementarity concept, we can easily obtain an
update equation for the approximatBn  of the Hessian
AgWAgPT B AzW][BAz*)]T

Bj1 = B + AgOTAZ® — Ax®OTB, Ag®)

» To obtain the BFGS update for the approximation of the
Inverse Hessian, we take the inversegf, to obtain

H[" = (Br)™!
AgFIAgWT B AzW|[ B, Ax®]T -1
AgWTAZ®  Az®T B, Az®) >

= (Bk+

31



The BFGS Algorithm

» Lemma 11.1Sherman-Morrison formula: Let A be a
nonsingular matrix. Let and be column vectors such that
1+vTAu #0. Then, A +wv! Is nonsingular, and its inverse

can be written interms of ! using the following formula:
V-1 _ 4-1 (A ) (v" AT
(Atuv)™ =4 1+vTA
» From Lemma 11.1 it follows thatA£~' is known, then the

Inverse of the matrixa augmented by a rank one matrix can be
obtained by a modification of the matrax!

32



The BFGS Algorithm

» Applying Lemma 11.1 twice t®,,, Vields

IIBFGS _ 7 . AgOTH , Ag®\ Az® Az T
k+1 k+( + Ag(’QTA:c(’f) )ACB(]”)TAg(k)

H; AgWAz®T + (H Ag®H Ag™TT
AgWT Ag(F)

» Recall that for the quadratic case the DFP algorithm satisfie
HP'PAgW) = 20 0 <4 <k . Therefore, the BFGS update 8y
satisfiesB, 1Az =g 0<i<k . By construction of the BFGS
formula fora 2> |, we conclude thlfflf+ NG = Ax™ 0 <i <k
Hence, the BFGS algorlthm enjoys all the properties of quasi-
Newton methods, including the conjugate directions property.
Moreover, the BFGS algorithm also inherits the positive
definiteness property of the DFP algorithm; that ig#f-£ o

and H, >0 , them 275> > ¢
33




Example

» The BFGS formula is often far more efficient than the DFP
formula.

» Use the BFGS method to minimige) = iz’ Qz — b + log()
5 —3 0
o-[53] +-[
» TakeH,=1, and,=[0,0"7 . Verifytrt=0Q!

» We have 0
d — —g = —(Qz"Y —b)=b= H

The objective function is a quadratic, and hence we can use the

following formula to compute,
gOTgO®

- dOTQd" 2

oy =

34



Example

» Therefore s — 20 4 a,d© — [192]

To computeH, = H"“° | we need the following quantities:

0
0) — (1) _ 7(0) —
Ax €T €T [1/2]

g1 = Qz) — b [—?5/ 2]

Ag) — g — g® _ [—?i/ 2]
Therefore,

AadOT HAqO\ Agp(OAp0)T
Hy - Hyv (10200 HidgTy A
AgOTAzO0) J Ax0TAgO)
AzWAgOTH) + HiAgWAz DT [1 3/2
Ag(O)TAw(O) - 3/2 11/4
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Example

» Hence, we haved" = —H,g" = [3/2]

9/4
o gV :
Wro 1)
Therefore, 477 Qd ]
r? =z 4 oy dV) = [5]
» Because our objective function is a quadraticcénz? | is the

minimizer. Notice that the gradienta®) ois ; thayis,= 0
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Example

» To verify thatH, =Q ! , we compute

3
(1) — n(2) _ (1) —
Ax €T @T [9/2]

3/
A¢n:¢m_¢n:[é]

AadUTE AgMr AgDA LT
Hy = Hy+ 14+ =50 ) == 20

Ag(l)TA;c(l) Am(l)TAg(l)

Aw(l)Ag“)THl +H1Ag(1)Aw(1)T B 23

- AgOT Az IRER:

= H,Q=QH,=1, = H,=Q"'
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