Chapter 11 Quasi-Newton Methods

An Introduction to Optimization

Spring, 2014

Wei-Ta Chu

- In Newton's method, for a general nonlinear objective function, convergence to a solution cannot be guaranteed from an arbitrary initial point $x^{(0)}$.
- ▶ The idea behind Newton's method is to locally approximate the function f being minimized, at every iteration, by a quadratic function. The minimizer for the quadratic approximation is used as the starting point for the next iteration.

$$
\bm{x}^{(k+1)} = \bm{x}^{(k)} - \bm{F}(\bm{x}^{(k)})^{-1}\bm{g}^{(k)}
$$

 Guarantee that the algorithm has the descent property by modifying as follows

$$
\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - \alpha_k \boldsymbol{F}(\boldsymbol{x}^{(k)})^{-1} \boldsymbol{g}^{(k)}
$$

where α_k is chosen to ensure that

 $f(\bm{x}^{(k+1)}) < f(\bm{x}^{(k)})$

- ▶ For example, we may choose We can then determine an appropriate value of α_k by performing a line search in the direction $-F(x^{(k)})^{-1}g^{(k)}$. Note that although the line search is simply the minimization of the real variable function $\phi_k(\alpha) = f(x^{(k)} - \alpha_k \mathbf{F}(x^{(k)})^{-1} \mathbf{g}^{(k)}$, it is not a trivial problem to solve.
- A computational drawback of Newton's method is the need to evaluate $F(x^{(k)})$ and solve the equation $F(x^{(k)})d^{(k)} = -g^{(k)}$. To avoid the computation of $F(x^{(k)})^{-1}$, the quasi-Newton methods use an approximation to $F(x^{(k)})^{-1}$ in place of the true inverse.

Consider the formula

$$
\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - \alpha \boldsymbol{H}_k \boldsymbol{g}^{(k)}
$$

where H_k is an $n \times n$ matrix and α is a positive search parameter. Expanding f about $x^{(k)}$ yields

$$
f(\mathbf{x}^{(k+1)}) = f(\mathbf{x}^{(k)}) + \mathbf{g}^{(k)T}(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) + o(||\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}||)
$$

= $f(\mathbf{x}^{(k)}) - \alpha \mathbf{g}^{(k)T} \mathbf{H}_k \mathbf{g}^{(k)} + o(||\mathbf{H}_k \mathbf{g}^{(k)}||\alpha)$

As α tends to zero, the second term on the right-hand side dominates the third. Thus, to guarantee a decrease in f for small α , we have to have

$$
\boldsymbol{g}^{(k)T}\boldsymbol{H}_k\boldsymbol{g}^{(k)}>0
$$

A simple way to ensure this is to require that H_k be positive definite.

Proposition 11.1: Let $f \in \mathcal{C}^1$, $\mathbf{x}^{(k)} \in \mathbb{R}^n$, $\mathbf{g}^{(k)} = \nabla f(\mathbf{x}^{(k)}) \neq \mathbf{0}$, and H_k an $n \times n$ real symmetric positive definite matrix. If we set $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \mathbf{H}_k \mathbf{q}^{(k)}$, where $\alpha_k = \arg \min_{\alpha > 0} f(\mathbf{x}^{(k)} - \alpha \mathbf{H}_k \mathbf{g}^{(k)}),$ then $\alpha_k > 0$ and $f(\mathbf{x}^{(k+1)}) < f(\mathbf{x}^{(k)})$

$$
\mathbf{g}^{(k)} = \nabla f(\mathbf{x}^{(k)}) \qquad \nabla f(\mathbf{x}) = \mathbf{Q}\mathbf{x} - \mathbf{b}^{\mathsf{T}} \mathbf{b}
$$

- Let $H_0, H_1, H_2, ...$ be successive approximations of the inverse $F(x^{(k)})^{-1}$ of the Hessian.
- Suppose first that the Hessian matrix $F(x)$ of the objective function f is constant and independent of x . In other words, the objective function is quadratic, with Hessian $F(x) = Q$ for all x, where $Q = Q^T$. Then, $\boldsymbol{g}^{(k+1)} - \boldsymbol{g}^{(k)} = \boldsymbol{Q}(\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^{(k)})$ Let

$$
\Delta \boldsymbol{g}^{(k)} \triangleq \boldsymbol{g}^{(k+1)} - \boldsymbol{g}^{(k)} \\ \Delta \boldsymbol{x}^{(k)} \triangleq \boldsymbol{x}^{(k+1)} - \boldsymbol{x}^{(k)}
$$

Then, we may write

$$
\Delta\boldsymbol{g}^{(k)}=\boldsymbol{Q}\Delta\boldsymbol{x}^{(k)}
$$

$$
\bm{g}^{(k+1)}-\bm{g}^{(k)}=\bm{Q}(\bm{x}^{(k+1)}-\bm{x}^{(k)})
$$

- \blacktriangleright We start with a real symmetric positive definite matrix H_0 . Note that given k , the matrix \mathbf{Q}^{-1} satisfies $\mathbf{Q}^{-1} \Delta \mathbf{g}^{(i)} = \Delta \mathbf{x}^{(i)}$ $0 \leq i \leq k$
- Therefore, we also impose the requirement that the approximation H_{k+1} of the Hessian satisfy

$$
\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}^{(i)} = \Delta \boldsymbol{x}^{(i)} \qquad 0 \leq i \leq k
$$

If n steps are involved, then moving in n directions Δ $\mathbf{x}^{(0)}, \Delta$ $\mathbf{x}^{(1)}, ..., \Delta$ $\mathbf{x}^{(n-1)}$ yields $\boldsymbol{H} \ \Lambda \boldsymbol{a}^{(0)} = \Lambda \boldsymbol{r}^{(0)}$

$$
\begin{aligned} \boldsymbol{H}_n \Delta \boldsymbol{g}^{(1)} &= \Delta \boldsymbol{x}^{(1)} \\ \vdots \\ \boldsymbol{H}_n \Delta \boldsymbol{g}^{(n-1)} &= \Delta \boldsymbol{x}^{(n-1)} \end{aligned}
$$

In This set of equations can be represented as Note that *satisfies*

 $\mathbf{Q}[\Delta \mathbf{x}^{(0)}, \Delta \mathbf{x}^{(1)}, ..., \Delta \mathbf{x}^{(n-1)}] = [\Delta \mathbf{q}^{(0)}, \Delta \mathbf{q}^{(1)}, ..., \Delta \mathbf{q}^{(n-1)}]$ and

 $\bm{Q}^{-1}[\Delta\bm{g}^{(0)},\Delta\bm{g}^{(1)},...,\Delta\bm{g}^{(n-1)}]=[\Delta\bm{x}^{(0)},\Delta\bm{x}^{(1)},...,\Delta\bm{x}^{(n-1)}]$

Therefore, if $[\Delta g^{(0)}, \Delta g^{(1)}, ..., \Delta g^{(n-1)}]$ is nonsingular, then Q^{-1} is determined uniquely after n steps, via

 $\mathbf{Q}^{-1} = \mathbf{H}_n = [\Delta \mathbf{x}^{(0)}, \Delta \mathbf{x}^{(1)}, ..., \Delta \mathbf{x}^{(n-1)}][\Delta \mathbf{g}^{(0)}, \Delta \mathbf{g}^{(1)}, ..., \Delta \mathbf{g}^{(n-1)}]^{-1}$

 \blacktriangleright We conclude that if H_n satisfies the equations

then the algorithm $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha_k \mathbf{H}_k \mathbf{q}^{(k)}$, , is guaranteed to solve problems with quadratic objective functions in $n + 1$ steps, because the update $x^{(n+1)} = x^{(n)} - \alpha_n H_n q^{(n)}$ is equivalent to Newton's algorithm.

The quasi-Newton algorithms have the form

$$
\boldsymbol{d}^{(k)} = -\boldsymbol{H}_k \boldsymbol{g}^{(k)}
$$

$$
\alpha_k = \arg \min_{\alpha \ge 0} f(\boldsymbol{x}^{(k)} + \alpha \boldsymbol{d}^{(k)})
$$

$$
\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \alpha_k \boldsymbol{d}^{(k)}
$$

where the matrices H_0, H_1, \dots are symmetric. In the quadratic case these matrices are required to satisfy

 $\boldsymbol{H}_{k+1} \Delta \boldsymbol{q}^{(i)} = \Delta \boldsymbol{x}^{(i)}, 0 \leq i \leq k$

where $\Delta x^{(i)} = x^{(i+1)} - x^{(i)} = \alpha_i d^{(i)}$ and $\Delta q^{(i)} = q^{(i+1)} - q^{(i)} = Q \Delta x^{(i)}$ It turns out that quasi-Newton methods are also conjugate direction methods.

- ▶ Theorem 11.1: Consider a quasi-Newton algorithm applied to a quadratic function with Hessian $Q = Q^T$ such that for $0 \le k \le n-1$ $\boldsymbol{H}_{k+1}\Delta\boldsymbol{q}^{(i)}=\Delta\boldsymbol{x}^{(i)}, 0\leq i\leq k$ where $H_{k+1} = H_{k+1}^T$. If $\alpha_i \neq 0, 0 \leq i \leq k$, then $d^{(0)}, ..., d^{(k+1)}$ are -conjugate.
- Proof: We proceed by induction. We begin with the $k = 0$ case: that $d^{(0)}$ and $d^{(1)}$ are Q-conjugate. Because $\alpha_0 \neq 0$, we can write $d^{(0)} = \Delta x^{(0)}/\alpha_0$. Hence, $\boldsymbol{d}^{(1)T}\boldsymbol{Q}\boldsymbol{d}^{(0)} = -\boldsymbol{a}^{(1)T}\boldsymbol{H}_1\boldsymbol{Q}\boldsymbol{d}^{(0)}$ but $q^{(1)T}d^{(0)}=0$ as a consequence $\boldsymbol{y} = -\boldsymbol{g}^{(1)T}\boldsymbol{H}_1 \frac{\boldsymbol{Q}\Delta\boldsymbol{x}^{(0)}}{\alpha_0}$ of $\alpha_0 > 0$ being the minimizer of $\bm{y} = -\bm{g}^{(1)T} \frac{\bm{H}_1 \Delta \bm{g}^{(0)}}{\alpha_0}$ $\phi(\alpha) = f(\boldsymbol{x}^{(0)} + \alpha \boldsymbol{d}^{(0)})$. Hence, $\boldsymbol{d}^{(1)T}\boldsymbol{Q}\boldsymbol{d}^{(0)}=0$ $\boldsymbol{y} = -\boldsymbol{g}^{(1)T\Delta\boldsymbol{x}^{(0)}}$ $= -a^{(1)T}d^{(0)}$

Assume that the result is true for $k-1$. We now prove that the result for k, that is, that $d^{(0)}, ..., d^{(k+1)}$ are Q-conjugate. If suffices to show that $d^{(k+1)T}Qd^{(i)} = 0, 0 \le i \le k$. Given $0 \le i \le k$ using the same algebraic steps as in the $k = 0$ case, and using the assumption that $\alpha_i \neq 0$, we obtain

$$
\begin{array}{l}\bm{d}^{(k+1)T}\bm{Q}\bm{d}^{(i)}=-\bm{g}^{(k+1)T}\bm{H}_{k+1}\bm{Q}\bm{d}^{(i)}\\ \vdots\\ \bm{g}^{(k+1)T}\bm{d}^{(i)}\end{array}
$$

Because $d^{(0)}, ..., d^{(k)}$ are Q-conjugate by assumption, we conclude from Lemma 10.2 that $q^{(k+1)T}d^{(i)} = 0$. Hence, $d^{(k+1)T}Qd^{(i)} = 0$, which completes the proof.

In the *rank one correction formula*, the correction term is symmetric and has the form $a_k z^{(k)} z^{(k)T}$, where $a_k \in R$ and $z^{(k)} \in R^n$ The update equation is

$$
\boldsymbol{H}_{k+1} = \boldsymbol{H}_k + a_k \boldsymbol{z}^{(k)} \boldsymbol{z}^{(k)T}
$$

Note that

$$
\operatorname{rank}(\boldsymbol{z}^{(k)}\boldsymbol{z}^{(k)T}) = \operatorname{rank}\left(\begin{bmatrix} z_1^{(k)} \\ \vdots \\ z_n^{(n)} \end{bmatrix} \begin{bmatrix} z_1^{(k)} & \cdots & z_n^{(k)} \end{bmatrix}\right) = 1
$$

and hence the name *rank one correction* [also called *singlerank symmetric* (SRF) algorithm]. The product $z^{(k)}z^{(k)T}$ is sometimes referred to as the *dyadic product* or *outer product*. Observe that if H_k is symmetric, then so is H_{k+1}

- \blacktriangleright Our goal now is to determine a_k and $\boldsymbol{z}^{(k)}$, given \boldsymbol{H}_k , $\Delta \boldsymbol{g}^{(k)}$, so that the required relationship discussed in Section 11.2 is satisfied; namely $\mathbf{H}_{k+1} \Delta \mathbf{q}^{(i)} = \Delta \mathbf{x}^{(i)}, i = 1, ..., k$.
- \blacktriangleright To begin, consider the condition $H_{k+1}\Delta g^{(k)} = \Delta x^{(k)}$. In other words, given H_k , $\Delta q^{(k)}$, $\Delta x^{(k)}$, we wish to find a_k and $z^{(k)}$ to ensure that

$$
\boldsymbol{H}_{k+1}\Delta\boldsymbol{g}^{(k)} = (\boldsymbol{H}_k + a_k\boldsymbol{z}^{(k)}\boldsymbol{z}^{(k)T})\Delta\boldsymbol{g}^{(k)} = \Delta\boldsymbol{x}^{(k)}
$$

First note that $z^{(k)T} \Delta g^{(k)}$ is a scalar. Thus,

$$
\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)} = (a_k \boldsymbol{z}^{(k)T} \Delta \boldsymbol{g}^{(k)}) \boldsymbol{z}^{(k)}
$$

and hence

$$
\boldsymbol{z}^{(k)} = \frac{\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)}}{a_k (\boldsymbol{z}^{(k)T} \Delta \boldsymbol{g}^{(k)})}
$$

$$
\boldsymbol{H}_{k+1}\Delta\boldsymbol{g}^{(k)}=(\boldsymbol{H}_{k}+a_k\boldsymbol{z}^{(k)}\boldsymbol{z}^{(k)T})\Delta\boldsymbol{g}^{(k)}=\Delta\boldsymbol{x}^{(k)}
$$

We can now determine

$$
a_k \boldsymbol{z}^{(k)} \boldsymbol{z}^{(k)T} = \frac{(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)})(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)})^T}{a_k (\boldsymbol{z}^{(k)T} \Delta \boldsymbol{g}^{(k)})^2}
$$

Hence,

$$
\boldsymbol{H}_{k+1} = \boldsymbol{H}_{(k)} + \frac{(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)})(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)})^T}{a_k (\boldsymbol{z}^{(k)T} \Delta \boldsymbol{g}^{(k)})^2}
$$

The next step is to express the denominator of the second term on the right-hand side as a function of the given quantities, $\Delta\bm{g}^{(k)}$, $\Delta\bm{x}^{(k)}$. Premultiply $\Delta\bm{x}^{(k)}-\bm{H}_k\Delta\bm{g}^{(k)}=(a_k\bm{z}^{(k)T}\Delta)$ by $\Delta q^{(k)T}$ to obtain

$$
\Delta \boldsymbol{g}^{(k) T} \Delta \boldsymbol{x}^{(k)} - \Delta \boldsymbol{g}^{(k) T} \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)} = \Delta \boldsymbol{g}^{(k) T} a_k \boldsymbol{z}^{(k)} \boldsymbol{z}^{(k) T} \Delta \boldsymbol{g}^{(k)}
$$

 $\sum_{k=1}^{n-r} g^{(k)T} \Delta x^{(k)} - \Delta g^{(k)T} \boldsymbol{H}_k \Delta g^{(k)} = \Delta g^{(k)T} a_k \boldsymbol{z}^{(k)} \boldsymbol{z}^{(k)T} \Delta g^{(k)}$

The Rank One Correction Formula

• Observe that a_k is a scalar and so is $\Delta g^{(k)T} z^{(k)} = z^{(k)T} \Delta g^{(k)}$. Thus,

$$
-\Delta\boldsymbol{g}^{(k)T}\Delta\boldsymbol{x}^{(k)}-\Delta\boldsymbol{g}^{(k)T}\boldsymbol{H}_{k}\Delta\boldsymbol{g}^{(k)}=a_{k}(\boldsymbol{z}^{(k)T}\Delta\boldsymbol{g}^{(k)})^{2}
$$

Taking this relation into account yields

$$
\boldsymbol{H}_{k+1} = \boldsymbol{H}_k + \frac{(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)})(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)})^T}{\Delta \boldsymbol{g}^{(k)T}(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)})}
$$

$$
\boldsymbol{H}_{k+1} = \boldsymbol{H}_{(k)} + \frac{(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)})(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)})^T}{a_k (\boldsymbol{z}^{(k)T} \Delta \boldsymbol{g}^{(k)})^2} \boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)} \boldsymbol{H}_{k+1}}
$$

Rank One Algorithm

- 1. Set $k := 0$; select $x^{(0)}$ and a real symmetric positive definite
- \blacktriangleright 2. If $g^{(k)} = 0$, stop; else,
- ▶ 3. Compute

$$
\alpha_k = \arg \min_{\alpha \ge 0} f(\boldsymbol{x}^{(k)} + \alpha \boldsymbol{d}^{(k)})
$$

$$
\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \alpha_k \boldsymbol{d}^{(k)}
$$

▶ 4. Compute
$$
\Delta \boldsymbol{x}^{(k)} = \alpha_k \boldsymbol{d}^{(k)}
$$

$$
\Delta \boldsymbol{g}^{(k)} = \boldsymbol{g}^{(k+1)} - \boldsymbol{g}^{(k)}
$$

$$
\boldsymbol{H}_{k+1} = \boldsymbol{H}_k + \frac{(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)})(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)})^T}{\Delta \boldsymbol{g}^{(k)T}(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)})}
$$

5. Set $k := k + 1$; go to step 2.

Rank One Algorithm

- However, what we want is
- ▶ Theorem 11.2: For the rank one algorithm applied to the quadratic with Hessian $Q = Q^T$, we have $H_{k+1} \Delta q^{(i)} = \Delta x^{(i)}$ $0 \leq i \leq k$
- ▶ Proof.

- Let $f(x_1, x_2) = x_1^2 + \frac{1}{2}x_2^2 + 3$. Apply the rank one correction algorithm to minimize f. Use $\mathbf{x}^{(0)} = [1, 2]^T$ and $\mathbf{H}_0 = \mathbf{I}_2$
- \blacktriangleright We can represent f as

$$
f(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^T \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \boldsymbol{x} + 3
$$

$$
\boldsymbol{g}^{(k)} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \boldsymbol{x}^{(k)}
$$

Thus,

Because $H_0 = I_2$, $d^{(0)} = -g^{(0)} = [-2, -2]^T$

▶ The objective function is quadratic, and hence $\alpha_0 = \arg \min_{\mathbf{a} > 0} f(\mathbf{x}^{(0)} + \alpha \mathbf{d}^{(0)})$

$$
\alpha_0 = \alpha_5 \min_{\alpha \ge 0} \int (\mathbf{x} - \alpha_4 \mathbf{x})
$$

= $-\frac{\mathbf{g}^{(0)T} \mathbf{d}^{(0)}}{\mathbf{d}^{(0)T} \mathbf{Q} \mathbf{d}^{(0)}} = \frac{[2, 2] \begin{bmatrix} 2 \\ 2 \end{bmatrix}}{[2, 2] \begin{bmatrix} 2 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix}} = \frac{2}{3}$
and thus $\mathbf{x}^{(1)} = \mathbf{x}^{(0)} + \alpha_0 \mathbf{d}^{(0)} = [-\frac{1}{3}, \frac{2}{3}]^T$
We then compute

$$
\Delta \boldsymbol{x}^{(0)} = \alpha_0 \boldsymbol{d}^{(0)} = [-\frac{4}{3}, -\frac{4}{3}]^T
$$

$$
\boldsymbol{g}^{(1)} = \boldsymbol{Q} \boldsymbol{x}^{(1)} = [-\frac{2}{3}, \frac{2}{3}]^T
$$

$$
\Delta \boldsymbol{g}^{(0)} = \boldsymbol{g}^{(1)} - \boldsymbol{g}^{(0)} = [-\frac{8}{3}, -\frac{4}{3}]^T
$$

Because

$$
\Delta \boldsymbol{g}^{(0)T}(\Delta \boldsymbol{x}^{(0)} - \boldsymbol{H}_0 \Delta \boldsymbol{g}^{(0)}) = \left[-\frac{8}{3}, -\frac{4}{3} \right] \begin{bmatrix} \frac{4}{3} \\ 0 \end{bmatrix} = -\frac{32}{9}
$$

We obtain

$$
\bm{H}_1 = \bm{H}_0 + \frac{(\Delta \bm{x}^{(0)} - \bm{H}_0 \Delta \bm{g}^{(0)})(\Delta \bm{x}^{(0)} - \bm{H}_0 \Delta \bm{g}^{(0)})^T}{\Delta \bm{g}^{(0)T}(\Delta \bm{x}^{(0)} - \bm{H}_0 \Delta \bm{g}^{(0)})} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{bmatrix}
$$

Therefore,

$$
\boldsymbol{d}^{(1)} = -\boldsymbol{H}_1 \boldsymbol{g}^{(1)} = [\frac{1}{3}, -\frac{2}{3}]^T
$$

$$
\alpha_1 = -\frac{\boldsymbol{g}^{(1)T} \boldsymbol{d}^{(1)}}{\boldsymbol{d}^{(1)T} \boldsymbol{Q} \boldsymbol{d}^{(1)}} = 1
$$

We now compute $\mathbf{x}^{(2)} = \mathbf{x}^{(1)} + \alpha_1 \mathbf{d}^{(1)} = [0, 0]^T$ Note that $g^{(2)} = 0$, and therefore $x^{(2)} = x^*$. As expected, the algorithm solves the problem in two steps.

21Note that the directions $\mathbf{d}^{(0)}$, $\mathbf{d}^{(1)}$ are \mathbf{Q} -conjugate, in accordance with Theorem 11.1.

- Unfortunately, the rank one correction algorithm is not very satisfactory for several reasons.
	- The matrix H_{k+1} that the rank one algorithm generates may not be positive definite and thus $d^{(k+1)}$ may not be a descent direction. This happens even in the quadratic case.
	- If $\Delta \mathbf{g}^{(k)T}(\Delta \mathbf{x}^{(k)} \mathbf{H}_k \Delta \mathbf{g}^{(k)})$ is close to zero, then there may be numerical problems in evaluating H_{k+1} .
- Fortunately, alternative algorithms have been developed for updating H_k . In particular, if we use a "rank two" update, then is guaranteed to be positive definite for all k , provided that the line search is exact.

The DFP Algorithm

- This algorithm was developed by Davidon (1959), Fletcher, and Powell (1963).
- The DFP algorithm is also known as the *variable metric algorithm*.
- ▶ DFP Algorithm
	- 1. Set $k := 0$; select $x^{(0)}$ and a real symmetric positive definite

▶ 2. If
$$
\mathbf{g}^{(k)} = \mathbf{0}
$$
, stop; else, $\mathbf{d}^{(k)} = -\mathbf{H}_k \mathbf{g}^{(k)}$

► 3. Compute
$$
\alpha_k = \arg \min_{\alpha \geq 0} f(\boldsymbol{x}^{(k)} + \alpha \boldsymbol{d}^{(k)})
$$

$$
\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \alpha_k \boldsymbol{d}^{(k)}
$$

▶ 4. Compute

23 5. Set $k := k + 1$; go to step 2.

The DFP Algorithm

- Theorem 11.3: In the DFP algorithm applied to the quadratic with Hessian $\mathbf{Q} = \mathbf{Q}^T$, we have $\mathbf{H}_{k+1} \Delta \mathbf{g}^{(i)} = \Delta \mathbf{x}^{(i)}$, $0 \le i \le k$
- Theorem 11.4: Suppose that $g^{(k)} \neq 0$. In the DFP algorithm, if H_k is positive definite, then so is H_{k+1} .

Locate the minimizer of $f(x) = \frac{1}{2}x^1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} x - x^1 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$,

Use the initial point $\mathbf{x}^{(0)} = [0, 0]^T$ and $\mathbf{H}_0 = \mathbf{I}_2$

• Note that in this case

$$
\boldsymbol{g}^{(k)} = \begin{bmatrix} 4 & 2 \\ 2 & 2 \end{bmatrix} \boldsymbol{x}^{(k)} - \begin{bmatrix} -1 \\ 1 \end{bmatrix}
$$

Hence,
$$
\mathbf{g}^{(0)} = [1, -1]^T
$$

$$
\mathbf{d}^{(0)} = -\mathbf{H}_0 \mathbf{g}^{(0)} = -\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}
$$

Because f is a quadratic function,

$$
\alpha_0 = \arg \min_{\alpha \ge 0} f(\boldsymbol{x}^{(0)} + \alpha \boldsymbol{d}^{(0)}) = -\frac{\boldsymbol{g}^{(0)T} \boldsymbol{d}^{(0)}}{\boldsymbol{d}^{(0)T} \boldsymbol{Q} \boldsymbol{d}^{(0)}} = 1
$$

- Therefore,
- ▶ We then compute $\boldsymbol{g}^{(1)} = \begin{bmatrix} 4 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} - \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$ $\Delta \boldsymbol{q}^{(0)} = \boldsymbol{q}^{(1)} - \boldsymbol{q}^{(0)} = [-2,0]^T$ ▶ Observe that

$$
\Delta \boldsymbol{x}^{(0)} \Delta \boldsymbol{x}^{(0)T} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}
$$

$$
\Delta \boldsymbol{x}^{(0)T} \Delta \boldsymbol{g}^{(0)} = 2
$$

$$
\boldsymbol{H}_0 \Delta \boldsymbol{g}^{(0)} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}
$$

Thus,

$$
(\boldsymbol{H}_0 \Delta \boldsymbol{g}^{(0)}) (\boldsymbol{H}_0 \Delta \boldsymbol{g}^{(0)})^T = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix} \qquad \Delta \boldsymbol{g}^{(0)T} \boldsymbol{H}_0 \Delta \boldsymbol{g}^{(0)} = 4
$$

Example $\boldsymbol{H}_1 = \boldsymbol{H}_0 + \frac{\Delta \boldsymbol{x}^{(0)} \Delta \boldsymbol{x}^{(0)T}}{\Delta \boldsymbol{x}^{(0)T} \Delta \boldsymbol{a}^{(0)}} - \frac{[\boldsymbol{H}_0 \Delta \boldsymbol{g}^{(0)}][\boldsymbol{H}_0 \Delta \boldsymbol{g}^{(0)}]^T}{\Delta \boldsymbol{a}^{(0)T} \boldsymbol{H}_0 \Delta \boldsymbol{a}^{(0)}}$ $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} - \frac{1}{4} \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix}$ $=\begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} \end{bmatrix}$ We now compute $d^{(1)} = -H_1 g^{(1)} = [0, 1]^T$ and Hence, $x^{(2)} = x^{(1)} + \alpha_0 d^{(1)} = [-1, 3/2]^T = x^*$, because f is a quadratic function of two variables. Note that we have $d^{(0)T}Qd^{(1)} = d^{(1)T}Qd^{(0)} = 0$; that is, $d^{(0)}$ and

 $d^{(1)}$ are Q-conjugate directions.

The DFP Algorithm

- The DFP algorithm is superior to the rank one algorithm in that it preserves the positive definiteness of H_k .
- However, it turns out that in the case of larger nonquadraticproblems the algorithm has the tendency of sometimes getting stuck. This phenomenon is attributed to H_k becoming nearly singular.

- Suggested by Broyden, Fletcher, Goldfarb, and Shanno.
- Recall that the updating formulas for the approximation of the inverse of the Hessian matrix were based on satisfying the equations

 $\bm{H}_{k+1} \Delta \bm{g}^{(i)} = \Delta \bm{x}^{(i)}$ $0 \leq i \leq k$

which were derived from $\Delta q^{(i)} = Q \Delta x^{(i)}$, $0 \le i \le k$. We then formulated update formulas for the approximations to the inverse of the Hessian matrix Q^{-1} .

An alternative to approximating Q^{-1} is to approximate Q itself.

- Let B_k be our estimate of Q at the kth step. We require B_{k+1} to satisfy $\Delta \mathbf{q}^{(i)} = \mathbf{B}_{k+1} \Delta \mathbf{x}^{(i)}$, $0 \le i \le k$.
- \triangleright Notice that this set of equations is similar to the previous set of equations for H_{k+1} , the only difference being that the roles of $\Delta x^{(i)}$ and $\Delta q^{(i)}$ are interchanged.
- \blacktriangleright Given any update formula for \bm{H}_k , a corresponding update formula for B_k can be found by interchanging the roles of B_k and H_k and of $\Delta g^{(k)}$ and $\Delta x^{(k)}$. In particular, the BFGS update for B_k corresponds to the DFP update for H_k . Formulas related in this way are said to be *dual* or *complementary*.

Recall that the DFP update for the approximation H_k of the inverse Hessian is

 $\boldsymbol{H}_{k+1}^{DFP} = \boldsymbol{H}_k + \frac{\Delta \boldsymbol{x}^{(k)}\Delta \boldsymbol{x}^{(k)T}}{\Delta \boldsymbol{x}^{(k)T}\Delta \boldsymbol{a}^{(k)}} - \frac{[\boldsymbol{H}_k\Delta \boldsymbol{g}^{(k)}][\boldsymbol{H}_k\Delta \boldsymbol{g}^{(k)}]^T}{\Delta \boldsymbol{a}^{(k)T}\boldsymbol{H}_k\Delta \boldsymbol{a}^{(k)}}.$

 Using the complementarity concept, we can easily obtain an update equation for the approximation B_k of the Hessian

$$
\bm{B}_{k+1} = \bm{B}_k + \frac{\Delta \bm{g}^{(k)}\Delta \bm{g}^{(k)T}}{\Delta \bm{g}^{(k)T}\Delta \bm{x}^{(k)}} - \frac{[\bm{B}_k\Delta \bm{x}^{(k)}][\bm{B}_k\Delta \bm{x}^{(k)}]^T}{\Delta \bm{x}^{(k)T}\bm{B}_k\Delta \bm{x}^{(k)}}
$$

 To obtain the BFGS update for the approximation of the inverse Hessian, we take the inverse of B_{k+1} to obtain ${\bf H}_{k+1}^{BFGS}=({\bf B}_{k+1})^{-1}$ $\mathcal{L} = \Big(\boldsymbol{B}_k + \frac{\Delta \boldsymbol{g}^{(k)}\Delta \boldsymbol{g}^{(k)T}}{\Delta \boldsymbol{a}^{(k)T}\Delta \boldsymbol{x}^{(k)}} - \frac{[\boldsymbol{B}_k\Delta \boldsymbol{x}^{(k)}][\boldsymbol{B}_k\Delta \boldsymbol{x}^{(k)}]^T}{\Delta \boldsymbol{x}^{(k)T}\boldsymbol{B}_k\Delta \boldsymbol{x}^{(k)}}\Big)^{-1}$

Lemma 11.1 *Sherman-Morrison formula*: Let A be a nonsingular matrix. Let u and v be column vectors such that $1 + v^T A u \neq 0$. Then, $A + u v^T$ is nonsingular, and its inverse can be written in terms of A^{-1} using the following formula:

$$
(\boldsymbol{A} + \boldsymbol{u}\boldsymbol{v}^T)^{-1} = \boldsymbol{A}^{-1} - \frac{(\boldsymbol{A}^{-1}\boldsymbol{u})(\boldsymbol{v}^T\boldsymbol{A}^{-1})}{1 + \boldsymbol{v}^T\boldsymbol{A}^{-1}\boldsymbol{u}}
$$

From Lemma 11.1 it follows that if A^{-1} is known, then the inverse of the matrix \boldsymbol{A} augmented by a rank one matrix can be obtained by a modification of the matrix A^{-1} .

- \blacktriangleright Applying Lemma 11.1 twice to B_{k+1} yields $\boldsymbol{H}_{k+1}^{BFGS} = \boldsymbol{H}_k + \Big(1 + \frac{\Delta \boldsymbol{g}^{(k)T} \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)}}{\Delta \boldsymbol{a}^{(k)T} \Delta \boldsymbol{x}^{(k)}}\Big) \frac{\Delta \boldsymbol{x}^{(k)} \Delta \boldsymbol{x}^{(k)T}}{\Delta \boldsymbol{x}^{(k)T} \Delta \boldsymbol{a}^{(k)}}$ $-\frac{\bm{H}_{k}\Delta\bm{g}^{(k)}\Delta\bm{x}^{(k)T}+(\bm{H}_{k}\Delta\bm{g}^{(k)}\Delta\bm{x}^{(k)T})^{T}}{\Delta\bm{g}^{(k)T}\Delta\bm{x}^{(k)}}$
- Recall that for the quadratic case the DFP algorithm satisfies $H_{k+1}^{DFP} \Delta g^{(i)} = x^{(i)}, 0 \le i \le k$. Therefore, the BFGS update for B_k satisfies $B_{k+1}\Delta x^{(i)} = q^{(i)}$, $0 \le i \le k$. By construction of the BFGS formula for H_{k+1}^{BFGS} , we conclude that $H_{k+1}^{BFGS} \Delta g^{(i)} = \Delta x^{(i)}$, $0 \le i \le k$ Hence, the BFGS algorithm enjoys all the properties of quasi-Newton methods, including the conjugate directions property. Moreover, the BFGS algorithm also inherits the positive definiteness property of the DFP algorithm; that is, if $g^{(k)} \neq 0$ and $H_k > 0$, then $H_{k+1}^{BFGS} > 0$

- \blacktriangleright The BFGS formula is often far more efficient than the DFP formula.
- \blacktriangleright Use the BFGS method to minimize $\boldsymbol{Q} = \begin{bmatrix} 5 & -3 \\ -3 & 2 \end{bmatrix} \quad \boldsymbol{b} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- Take $H_0 = I_2$ and $x_0 = [0, 0]^T$. Verify that $H_2 = Q^{-1}$.
- ▶ We have

The objective function is a quadratic, and hence we can use the following formula to compute α_0

$$
\alpha_0 = -\frac{\bm{g}^{(0)T}\bm{d}^{(0)}}{\bm{d}^{(0)T}\bm{Q}\bm{d}^{(0)}} = \frac{1}{2}
$$

• Therefore,
$$
\boldsymbol{x}^{(1)} = \boldsymbol{x}^{(0)} + \alpha_0 \boldsymbol{d}^{(0)} = \begin{bmatrix} 0 \\ 1/2 \end{bmatrix}
$$

To compute $H_1 = H_1^{BFGS}$, we need the following quantities:

$$
\Delta \boldsymbol{x}^{(0)} = \boldsymbol{x}^{(1)} - \boldsymbol{x}^{(0)} = \begin{bmatrix} 0 \\ 1/2 \end{bmatrix}
$$

$$
\boldsymbol{g}^{(1)} = \boldsymbol{Q} \boldsymbol{x}^{(1)} - \boldsymbol{b} = \begin{bmatrix} -3/2 \\ 0 \end{bmatrix}
$$

$$
\Delta \boldsymbol{g}^{(0)} = \boldsymbol{g}^{(1)} - \boldsymbol{g}^{(0)} = \begin{bmatrix} -3/2 \\ 1 \end{bmatrix}
$$

Therefore,

$$
\boldsymbol{H}_1 = \boldsymbol{H}_0 + \left(1 + \frac{\Delta \boldsymbol{g}^{(0)T} \boldsymbol{H}_0 \Delta \boldsymbol{g}^{(0)}}{\Delta \boldsymbol{g}^{(0)T} \Delta \boldsymbol{x}^{(0)}}\right) \frac{\Delta \boldsymbol{x}^{(0)} \Delta \boldsymbol{x}^{(0)T}}{\Delta \boldsymbol{x}^{(0)T} \Delta \boldsymbol{g}^{(0)}}
$$

$$
- \frac{\Delta \boldsymbol{x}^{(0)} \Delta \boldsymbol{g}^{(0)T} \boldsymbol{H}_0 + \boldsymbol{H}_0 \Delta \boldsymbol{g}^{(0)} \Delta \boldsymbol{x}^{(0)T}}{\Delta \boldsymbol{g}^{(0)T} \Delta \boldsymbol{x}^{(0)}} = \begin{bmatrix} 1 & 3/2 \\ 3/2 & 11/4 \end{bmatrix}
$$

- ▶ Hence, we have $\alpha_1 = -\frac{\bm{g}^{(1)T}\bm{d}^{(1)}}{\bm{d}^{(1)T}\bm{Q}\bm{d}^{(1)}} = 2$ Therefore, $\boldsymbol{x}^{(2)} = \boldsymbol{x}^{(1)} + \alpha_1 \boldsymbol{d}^{(1)} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$
- Because our objective function is a quadratic on R^2 , $x^{(2)}$ is the minimizer. Notice that the gradient at $x^{(2)}$ is 0; that is, $q^{(2)} = 0$

 \blacktriangleright To verify that $H_2 = Q^{-1}$, we compute $\boldsymbol{H}_2 = \boldsymbol{H}_1 + \Big(1 + \frac{\Delta \boldsymbol{g}^{(1)T} \boldsymbol{H}_1 \Delta \boldsymbol{g}^{(1)}}{\Delta \boldsymbol{g}^{(1)T} \Delta \boldsymbol{x}^{(1)}}\Big) \frac{\Delta \boldsymbol{x}^{(1)} \Delta \boldsymbol{x}^{(1)T}}{\Delta \boldsymbol{x}^{(1)T} \Delta \boldsymbol{g}^{(1)}}$ $-\frac{\Delta \boldsymbol{x}^{(1)} \Delta \boldsymbol{g}^{(1)T} \boldsymbol{H}_1 + \boldsymbol{H}_1 \Delta \boldsymbol{g}^{(1)} \Delta \boldsymbol{x}^{(1)T}}{\Delta \boldsymbol{g}^{(1)T} \Delta \boldsymbol{x}^{(1)}} = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$

 $\implies H_2Q = QH_2 = I_2 \implies H_2 = Q^{-1}$