Chapter 11 Quasi-Newton Methods

An Introduction to Optimization

Spring, 2014

Wei-Ta Chu

- In Newton's method, for a general nonlinear objective function, convergence to a solution cannot be guaranteed from an arbitrary initial point x⁽⁰⁾.
- The idea behind Newton's method is to locally approximate the function *f* being minimized, at every iteration, by a quadratic function. The minimizer for the quadratic approximation is used as the starting point for the next iteration.

$$x^{(k+1)} = x^{(k)} - F(x^{(k)})^{-1}g^{(k)}$$

• Guarantee that the algorithm has the descent property by modifying as follows

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - \alpha_k \boldsymbol{F}(\boldsymbol{x}^{(k)})^{-1} \boldsymbol{g}^{(k)}$$

where α_k is chosen to ensure that

 $f(x^{(k+1)}) < f(x^{(k)})$

- For example, we may choose α_k = arg min_{α≥0} f(x^(k) − α_kF(x^(k))⁻¹g^(k)) We can then determine an appropriate value of α_k by performing a line search in the direction −F(x^(k))⁻¹g^(k). Note that although the line search is simply the minimization of the real variable function φ_k(α) = f(x^(k) − α_kF(x^(k))⁻¹g^(k)), it is not a trivial problem to solve.
- ▶ A computational drawback of Newton's method is the need to evaluate F(x^(k)) and solve the equation F(x^(k))d^(k) = -g^(k). To avoid the computation of F(x^(k))⁻¹, the quasi-Newton methods use an approximation to F(x^(k))⁻¹ in place of the true inverse.

• Consider the formula

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - \alpha \boldsymbol{H}_k \boldsymbol{g}^{(k)}$$

where H_k is an $n \times n$ matrix and α is a positive search parameter. Expanding f about $x^{(k)}$ yields

$$f(\boldsymbol{x}^{(k+1)}) = f(\boldsymbol{x}^{(k)}) + \boldsymbol{g}^{(k)T}(\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^{(k)}) + o(\|\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^{(k)}\|)$$

= $f(\boldsymbol{x}^{(k)}) - \alpha \boldsymbol{g}^{(k)T} \boldsymbol{H}_k \boldsymbol{g}^{(k)} + o(\|\boldsymbol{H}_k \boldsymbol{g}^{(k)}\|\alpha)$

As α tends to zero, the second term on the right-hand side dominates the third. Thus, to guarantee a decrease in f for small α , we have to have

$$\boldsymbol{g}^{(k)T}\boldsymbol{H}_k\boldsymbol{g}^{(k)} > 0$$

A simple way to ensure this is to require that H_k be positive definite.

• Proposition 11.1: Let $f \in C^1$, $\mathbf{x}^{(k)} \in R^n$, $\mathbf{g}^{(k)} = \nabla f(\mathbf{x}^{(k)}) \neq \mathbf{0}$, and \mathbf{H}_k an $n \times n$ real symmetric positive definite matrix. If we set $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \mathbf{H}_k \mathbf{g}^{(k)}$, where $\alpha_k = \arg \min_{\alpha \ge 0} f(\mathbf{x}^{(k)} - \alpha \mathbf{H}_k \mathbf{g}^{(k)})$, then $\alpha_k > 0$ and $f(\mathbf{x}^{(k+1)}) < f(\mathbf{x}^{(k)})$

$$oldsymbol{g}^{(k)} = igtrianglephi(oldsymbol{x}^{(k)}) \quad igtrianglephi(oldsymbol{x}) = oldsymbol{Q}oldsymbol{x} - oldsymbol{b}$$

- Let *H*₀, *H*₁, *H*₂, ... be successive approximations of the inverse
 F(*x*^(k))⁻¹ of the Hessian.
- Suppose first that the Hessian matrix F(x) of the objective function f is constant and independent of x. In other words, the objective function is quadratic, with Hessian F(x) = Q for all x, where Q = Q^T. Then,
 g^(k+1) g^(k) = Q(x^(k+1) x^(k))

Let

$$\Delta \boldsymbol{g}^{(k)} \triangleq \boldsymbol{g}^{(k+1)} - \boldsymbol{g}^{(k)}$$
$$\Delta \boldsymbol{x}^{(k)} \triangleq \boldsymbol{x}^{(k+1)} - \boldsymbol{x}^{(k)}$$

Then, we may write

$$\Delta \boldsymbol{g}^{(k)} = \boldsymbol{Q} \Delta \boldsymbol{x}^{(k)}$$

$$g^{(k+1)} - g^{(k)} = Q(x^{(k+1)} - x^{(k)})$$

- We start with a real symmetric positive definite matrix H₀. Note that given k , the matrix Q⁻¹ satisfies
 Q⁻¹∆g⁽ⁱ⁾ = ∆x⁽ⁱ⁾ 0 ≤ i ≤ k
- Therefore, we also impose the requirement that the approximation H_{k+1} of the Hessian satisfy

$$\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}^{(i)} = \Delta \boldsymbol{x}^{(i)} \qquad 0 \leq i \leq k$$

• If *n* steps are involved, then moving in *n* directions $\Delta \boldsymbol{x}^{(0)}, \Delta \boldsymbol{x}^{(1)}, ..., \Delta \boldsymbol{x}^{(n-1)}$ yields $\boldsymbol{H}_n \Delta \boldsymbol{g}^{(0)} = \Delta \boldsymbol{x}^{(0)}$ $\boldsymbol{H}_n \Delta \boldsymbol{g}^{(1)} = \Delta \boldsymbol{x}^{(1)}$

:
$$\boldsymbol{H}_n \Delta \boldsymbol{g}^{(n-1)} = \Delta \boldsymbol{x}^{(n-1)}$$

This set of equations can be represented as
 *H*_n[∆*g*⁽⁰⁾, ∆*g*⁽¹⁾, ..., ∆*g*⁽ⁿ⁻¹⁾] = [∆*x*⁽⁰⁾, ∆*x*⁽¹⁾, ..., ∆*x*⁽ⁿ⁻¹⁾]
 Note that *Q* satisfies

 $Q[\Delta x^{(0)}, \Delta x^{(1)}, ..., \Delta x^{(n-1)}] = [\Delta g^{(0)}, \Delta g^{(1)}, ..., \Delta g^{(n-1)}]$ and

$$\boldsymbol{Q}^{-1}[\Delta \boldsymbol{g}^{(0)}, \Delta \boldsymbol{g}^{(1)}, ..., \Delta \boldsymbol{g}^{(n-1)}] = [\Delta \boldsymbol{x}^{(0)}, \Delta \boldsymbol{x}^{(1)}, ..., \Delta \boldsymbol{x}^{(n-1)}]$$

Therefore, if $[\Delta g^{(0)}, \Delta g^{(1)}, ..., \Delta g^{(n-1)}]$ is nonsingular, then Q^{-1} is determined uniquely after n steps, via

 $Q^{-1} = H_n = [\Delta x^{(0)}, \Delta x^{(1)}, ..., \Delta x^{(n-1)}] [\Delta g^{(0)}, \Delta g^{(1)}, ..., \Delta g^{(n-1)}]^{-1}$

• We conclude that if H_n satisfies the equations $H_n \Delta g^{(i)} = \Delta x^{(i)}, 0 \le i \le n-1$

then the algorithm $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha_k \mathbf{H}_k \mathbf{g}^{(k)}$, $\alpha_k = \arg \min_{\alpha \ge 0} f(\mathbf{x}^{(k)} - \alpha \mathbf{H}_k \mathbf{g}^{(k)})$, is guaranteed to solve problems with quadratic objective functions in n + 1 steps, because the update $\mathbf{x}^{(n+1)} = \mathbf{x}^{(n)} - \alpha_n \mathbf{H}_n \mathbf{g}^{(n)}$ is equivalent to Newton's algorithm.

> The quasi-Newton algorithms have the form

$$\boldsymbol{d}^{(k)} = -\boldsymbol{H}_{k}\boldsymbol{g}^{(k)}$$
$$\alpha_{k} = \arg\min_{\alpha \geq 0} f(\boldsymbol{x}^{(k)} + \alpha \boldsymbol{d}^{(k)})$$
$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \alpha_{k}\boldsymbol{d}^{(k)}$$

where the matrices $H_0, H_1, ...$ are symmetric. In the quadratic case these matrices are required to satisfy

 $\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}^{(i)} = \Delta \boldsymbol{x}^{(i)}, 0 \leq i \leq k$

where $\Delta x^{(i)} = x^{(i+1)} - x^{(i)} = \alpha_i d^{(i)}$ and $\Delta g^{(i)} = g^{(i+1)} - g^{(i)} = Q \Delta x^{(i)}$ It turns out that quasi-Newton methods are also conjugate direction methods.

- Theorem 11.1: Consider a quasi-Newton algorithm applied to a quadratic function with Hessian Q = Q^T such that for 0 ≤ k < n − 1 *H*_{k+1}∆g⁽ⁱ⁾ = ∆x⁽ⁱ⁾, 0 ≤ i ≤ k
 where *H*_{k+1} = *H*^T_{k+1}. If α_i ≠ 0, 0 ≤ i ≤ k, then d⁽⁰⁾, ..., d^(k+1) are
 Q-conjugate.
- Proof: We proceed by induction. We begin with the k = 0 case: that $d^{(0)}$ and $d^{(1)}$ are Q-conjugate. Because $\alpha_0 \neq 0$, we can write $d^{(0)} = \Delta x^{(0)} / \alpha_0$. Hence, $d^{(1)T}Qd^{(0)} = -g^{(1)T}H_1Qd^{(0)}$ but $g^{(1)T}d^{(0)} = 0$ as a consequence of $\alpha_0 > 0$ being the minimizer of $\phi(\alpha) = f(x^{(0)} + \alpha d^{(0)})$. Hence, $d^{(1)T}Qd^{(0)} = 0$ $= -g^{(1)T}H_1\frac{\Delta x^{(0)}}{\alpha_0}$ $= -g^{(1)T}\frac{\Delta x^{(0)}}{\alpha_0}$ $= -g^{(1)T}\frac{\Delta x^{(0)}}{\alpha_0}$

Assume that the result is true for k − 1. We now prove that the result for k, that is, that d⁽⁰⁾, ..., d^(k+1) are Q-conjugate. If suffices to show that d^{(k+1)T}Qd⁽ⁱ⁾ = 0, 0 ≤ i ≤ k. Given 0 ≤ i ≤ k using the same algebraic steps as in the k = 0 case, and using the assumption that α_i ≠ 0, we obtain

$$m{d}^{(k+1)T} m{Q} m{d}^{(i)} = -m{g}^{(k+1)T} m{H}_{k+1} m{Q} m{d}^{(i)}$$

:
= $-m{g}^{(k+1)T} m{d}^{(i)}$

Because $d^{(0)}, ..., d^{(k)}$ are *Q*-conjugate by assumption, we conclude from Lemma 10.2 that $g^{(k+1)T}d^{(i)} = 0$. Hence, $d^{(k+1)T}Qd^{(i)} = 0$, which completes the proof.

In the *rank one correction formula*, the correction term is symmetric and has the form a_kz^(k)z^{(k)T}, where a_k ∈ R and z^(k) ∈ Rⁿ The update equation is

$$\boldsymbol{H}_{k+1} = \boldsymbol{H}_k + a_k \boldsymbol{z}^{(k)} \boldsymbol{z}^{(k)T}$$

Note that

$$\operatorname{rank}(\boldsymbol{z}^{(k)}\boldsymbol{z}^{(k)T}) = \operatorname{rank}\left(\begin{bmatrix}z_1^{(k)}\\\vdots\\z_n^{(n)}\end{bmatrix}\begin{bmatrix}z_1^{(k)}&\cdots&z_n^{(k)}\end{bmatrix}\right) = 1$$

and hence the name *rank one correction* [also called *single-rank symmetric* (SRF) algorithm]. The product $z^{(k)}z^{(k)T}$ is sometimes referred to as the *dyadic product* or *outer product*. Observe that if H_k is symmetric, then so is H_{k+1}

- Our goal now is to determine a_k and z^(k), given H_k, ∆g^(k), ∆x^(k) so that the required relationship discussed in Section 11.2 is satisfied; namely H_{k+1}∆g⁽ⁱ⁾ = ∆x⁽ⁱ⁾, i = 1, ..., k.
- ► To begin, consider the condition H_{k+1}∆g^(k) = ∆x^(k). In other words, given H_k, ∆g^(k), ∆x^(k), we wish to find a_k and z^(k) to ensure that

$$\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}^{(k)} = (\boldsymbol{H}_k + a_k \boldsymbol{z}^{(k)} \boldsymbol{z}^{(k)T}) \Delta \boldsymbol{g}^{(k)} = \Delta \boldsymbol{x}^{(k)}$$

First note that $\boldsymbol{z}^{(k)T} \Delta \boldsymbol{g}^{(k)}$ is a scalar. Thus,

$$\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)} = (a_k \boldsymbol{z}^{(k)T} \Delta \boldsymbol{g}^{(k)}) \boldsymbol{z}^{(k)}$$

and hence

$$oldsymbol{z}^{(k)} = rac{\Delta oldsymbol{x}^{(k)} - oldsymbol{H}_k \Delta oldsymbol{g}^{(k)}}{a_k(oldsymbol{z}^{(k)T} \Delta oldsymbol{g}^{(k)})}$$

$$\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}^{(k)} = (\boldsymbol{H}_k + a_k \boldsymbol{z}^{(k)} \boldsymbol{z}^{(k)T}) \Delta \boldsymbol{g}^{(k)} = \Delta \boldsymbol{x}^{(k)}$$

• We can now determine

$$a_k \boldsymbol{z}^{(k)} \boldsymbol{z}^{(k)T} = \frac{(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)})(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)})^T}{a_k (\boldsymbol{z}^{(k)T} \Delta \boldsymbol{g}^{(k)})^2}$$

Hence,

$$\boldsymbol{H}_{k+1} = \boldsymbol{H}_{(k)} + \frac{(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)})(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)})^T}{a_k (\boldsymbol{z}^{(k)T} \Delta \boldsymbol{g}^{(k)})^2}$$

The next step is to express the denominator of the second term on the right-hand side as a function of the given quantities
 H_k, ∆*g*^(k), ∆*x*^(k). Premultiply ∆*x*^(k) − *H_k*∆*g*^(k) = (*a_kz*^{(k)T}∆*g*^(k))*z*^(k) by ∆*g*^{(k)T} to obtain

$$\Delta \boldsymbol{g}^{(k)T} \Delta \boldsymbol{x}^{(k)} - \Delta \boldsymbol{g}^{(k)T} \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)} = \Delta \boldsymbol{g}^{(k)T} a_k \boldsymbol{z}^{(k)T} \Delta \boldsymbol{g}^{(k)T} \Delta \boldsymbol$$

 $\left[\Delta \boldsymbol{g}^{(k)T} \Delta \boldsymbol{x}^{(k)} - \Delta \boldsymbol{g}^{(k)T} \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)} = \Delta \boldsymbol{g}^{(k)T} a_k \boldsymbol{z}^{(k)T} \Delta \boldsymbol{g}^{(k)} \right]$

The Rank One Correction Formula

• Observe that a_k is a scalar and so is $\Delta g^{(k)T} \mathbf{z}^{(k)} = \mathbf{z}^{(k)T} \Delta g^{(k)}$. Thus,

$$\Delta \boldsymbol{g}^{(k)T} \Delta \boldsymbol{x}^{(k)} - \Delta \boldsymbol{g}^{(k)T} \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)} = a_k (\boldsymbol{z}^{(k)T} \Delta \boldsymbol{g}^{(k)})^2$$

Taking this relation into account yields

$$\boldsymbol{H}_{k+1} = \boldsymbol{H}_{k} + \frac{(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)})(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)})^{T}}{\Delta \boldsymbol{g}^{(k)T}(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)})}$$

$$\boldsymbol{H}_{k+1} = \boldsymbol{H}_{(k)} + \frac{(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)})(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)})^T}{a_k (\boldsymbol{z}^{(k)T} \Delta \boldsymbol{g}^{(k)})^2}$$

Rank One Algorithm

- ▶ 1. Set k := 0; select $x^{(0)}$ and a real symmetric positive definite H_0
- ▶ 2. If $g^{(k)} = 0$, stop; else, $d^{(k)} = -H_k g^{(k)}$
- 3. Compute

$$egin{aligned} &lpha_k = rg \min_{lpha \geq 0} f(oldsymbol{x}^{(k)} + lpha oldsymbol{d}^{(k)}) \ &oldsymbol{x}^{(k+1)} = oldsymbol{x}^{(k)} + lpha_k oldsymbol{d}^{(k)} \end{aligned}$$

► 4. Compute
$$\Delta \boldsymbol{x}^{(k)} = \alpha_k \boldsymbol{d}^{(k)}$$
$$\Delta \boldsymbol{g}^{(k)} = \boldsymbol{g}^{(k+1)} - \boldsymbol{g}^{(k)}$$
$$\boldsymbol{H}_{k+1} = \boldsymbol{H}_k + \frac{(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)})(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)})^T}{\Delta \boldsymbol{g}^{(k)T}(\Delta \boldsymbol{x}^{(k)} - \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)})}$$

• 5. Set k := k + 1; go to step 2.

Rank One Algorithm

- However, what we want is $\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}^{(i)} = \Delta \boldsymbol{x}^{(i)}, i = 1, ..., k$
- Theorem 11.2: For the rank one algorithm applied to the quadratic with Hessian $Q = Q^T$, we have $H_{k+1}\Delta g^{(i)} = \Delta x^{(i)}$ $0 \le i \le k$
- Proof.

- Let $f(x_1, x_2) = x_1^2 + \frac{1}{2}x_2^2 + 3$. Apply the rank one correction algorithm to minimize f. Use $\mathbf{x}^{(0)} = [1, 2]^T$ and $\mathbf{H}_0 = \mathbf{I}_2$
- We can represent f as

$$f(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^T \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \boldsymbol{x} + 3$$
$$\boldsymbol{g}^{(k)} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \boldsymbol{x}^{(k)}$$

Thus,

Because $H_0 = I_2$, $d^{(0)} = -g^{(0)} = [-2, -2]^T$

• The objective function is quadratic, and hence $\alpha_0 = \arg \min_{\alpha>0} f(\boldsymbol{x}^{(0)} + \alpha \boldsymbol{d}^{(0)})$

$$= -\frac{\boldsymbol{g}^{(0)T}\boldsymbol{d}^{(0)}}{\boldsymbol{d}^{(0)T}\boldsymbol{Q}\boldsymbol{d}^{(0)}} = \frac{\begin{bmatrix} 2,2 \end{bmatrix} \begin{bmatrix} 2\\2 \end{bmatrix}}{\begin{bmatrix} 2\\2 \end{bmatrix}} = \frac{2}{3}$$

and thus $\boldsymbol{x}^{(1)} = \boldsymbol{x}^{(0)} + \alpha_0 \boldsymbol{d}^{(0)} = \begin{bmatrix} -\frac{1}{3}, \frac{2}{3} \end{bmatrix}^T$
We then compute

$$\Delta \boldsymbol{x}^{(0)} = \alpha_0 \boldsymbol{d}^{(0)} = [-\frac{4}{3}, -\frac{4}{3}]^T$$
$$\boldsymbol{g}^{(1)} = \boldsymbol{Q} \boldsymbol{x}^{(1)} = [-\frac{2}{3}, \frac{2}{3}]^T$$
$$\Delta \boldsymbol{g}^{(0)} = \boldsymbol{g}^{(1)} - \boldsymbol{g}^{(0)} = [-\frac{8}{3}, -\frac{4}{3}]^T$$

Because

$$\Delta \boldsymbol{g}^{(0)T}(\Delta \boldsymbol{x}^{(0)} - \boldsymbol{H}_0 \Delta \boldsymbol{g}^{(0)}) = \left[-\frac{8}{3}, -\frac{4}{3}\right] \begin{bmatrix} \frac{4}{3} \\ 0 \end{bmatrix} = -\frac{32}{9}$$

We obtain

$$\boldsymbol{H}_{1} = \boldsymbol{H}_{0} + \frac{(\Delta \boldsymbol{x}^{(0)} - \boldsymbol{H}_{0} \Delta \boldsymbol{g}^{(0)})(\Delta \boldsymbol{x}^{(0)} - \boldsymbol{H}_{0} \Delta \boldsymbol{g}^{(0)})^{T}}{\Delta \boldsymbol{g}^{(0)T}(\Delta \boldsymbol{x}^{(0)} - \boldsymbol{H}_{0} \Delta \boldsymbol{g}^{(0)})} = \begin{bmatrix} \frac{1}{2} & 0\\ 0 & 1 \end{bmatrix}$$

Therefore,

$$\boldsymbol{d}^{(1)} = -\boldsymbol{H}_{1}\boldsymbol{g}^{(1)} = [\frac{1}{3}, -\frac{2}{3}]^{T}$$
$$\alpha_{1} = -\frac{\boldsymbol{g}^{(1)T}\boldsymbol{d}^{(1)}}{\boldsymbol{d}^{(1)T}\boldsymbol{Q}\boldsymbol{d}^{(1)}} = 1$$

We now compute $\mathbf{x}^{(2)} = \mathbf{x}^{(1)} + \alpha_1 \mathbf{d}^{(1)} = [0, 0]^T$ Note that $\mathbf{g}^{(2)} = \mathbf{0}$, and therefore $\mathbf{x}^{(2)} = \mathbf{x}^*$. As expected, the algorithm solves the problem in two steps.

Note that the directions $d^{(0)}$, $d^{(1)}$ are Q-conjugate, in accordance with Theorem 11.1.

- Unfortunately, the rank one correction algorithm is not very satisfactory for several reasons.
 - The matrix H_{k+1} that the rank one algorithm generates may not be positive definite and thus d^(k+1) may not be a descent direction. This happens even in the quadratic case.
 - If $\Delta g^{(k)T}(\Delta x^{(k)} H_k \Delta g^{(k)})$ is close to zero, then there may be numerical problems in evaluating H_{k+1} .
- Fortunately, alternative algorithms have been developed for updating *H_k*. In particular, if we use a "rank two" update, then *H_k* is guaranteed to be positive definite for all *k*, provided that the line search is exact.

The DFP Algorithm

- This algorithm was developed by Davidon (1959), Fletcher, and Powell (1963).
- The DFP algorithm is also known as the *variable metric algorithm*.
- DFP Algorithm
 - ▶ 1. Set k := 0; select $\boldsymbol{x}^{(0)}$ and a real symmetric positive definite \boldsymbol{H}_0

▶ 2. If
$$g^{(k)} = 0$$
, stop; else, $d^{(k)} = -H_k g^{(k)}$

> 3. Compute
$$\alpha_k = \arg \min_{\alpha \ge 0} f(\boldsymbol{x}^{(k)} + \alpha \boldsymbol{d}^{(k)})$$

 $\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \alpha_k \boldsymbol{d}^{(k)}$

4. Compute $\begin{aligned} \Delta \boldsymbol{x}^{(k)} &= \alpha_k \boldsymbol{d}^{(k)} \\ \Delta \boldsymbol{g}^{(k)} &= \boldsymbol{g}^{(k+1)} - \boldsymbol{g}^{(k)} \\ \boldsymbol{H}_{k+1} &= \boldsymbol{H}_k + \frac{\Delta \boldsymbol{x}^{(k)} \Delta \boldsymbol{x}^{(k)T}}{\Delta \boldsymbol{x}^{(k)T} \Delta \boldsymbol{g}^{(k)}} - \frac{[\boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)}][\boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)}]^T}{\Delta \boldsymbol{g}^{(k)T} \boldsymbol{H}_k \Delta \boldsymbol{g}^{(k)}}
\end{aligned}$

▶ 23 5. Set k := k + 1; go to step 2.

The DFP Algorithm

- Theorem 11.3: In the DFP algorithm applied to the quadratic with Hessian $Q = Q^T$, we have $H_{k+1} \Delta g^{(i)} = \Delta x^{(i)}, \ 0 \le i \le k$
- Theorem 11.4: Suppose that g^(k) ≠ 0. In the DFP algorithm, if H_k is positive definite, then so is H_{k+1}.

• Locate the minimizer of $f(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^T \begin{bmatrix} 4 & 2 \\ 2 & 2 \end{bmatrix} \boldsymbol{x} - \boldsymbol{x}^T \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \ \boldsymbol{x} \in R^2$

Use the initial point $\boldsymbol{x}^{(0)} = [0, 0]^T$ and $\boldsymbol{H}_0 = \boldsymbol{I}_2$

Note that in this case

$$oldsymbol{g}^{(k)} = \begin{bmatrix} 4 & 2 \\ 2 & 2 \end{bmatrix} oldsymbol{x}^{(k)} - \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Hence,
$$\boldsymbol{g}^{(0)} = [1, -1]^T$$

 $\boldsymbol{d}^{(0)} = -\boldsymbol{H}_0 \boldsymbol{g}^{(0)} = -\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

Because f is a quadratic function,

$$\alpha_0 = \arg\min_{\alpha \ge 0} f(\boldsymbol{x}^{(0)} + \alpha \boldsymbol{d}^{(0)}) = -\frac{\boldsymbol{g}^{(0)T} \boldsymbol{d}^{(0)}}{\boldsymbol{d}^{(0)T} \boldsymbol{Q} \boldsymbol{d}^{(0)}} = 1$$

- Therefore, $\boldsymbol{x}^{(1)} = \boldsymbol{x}^{(0)} + \alpha_0 \boldsymbol{d}^{(0)} = [-1, 1]^T$
- We then compute $\Delta x^{(0)} = x^{(1)} x^{(0)} = [-1, 1]^T$ $\boldsymbol{g}^{(1)} = \begin{bmatrix} 4 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} - \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$ $\Delta \boldsymbol{q}^{(0)} = \boldsymbol{q}^{(1)} - \boldsymbol{q}^{(0)} = [-2, 0]^T$ • Observe that

$$\Delta \boldsymbol{x}^{(0)} \Delta \boldsymbol{x}^{(0)T} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
$$\Delta \boldsymbol{x}^{(0)T} \Delta \boldsymbol{g}^{(0)} = 2$$
$$\boldsymbol{H}_0 \Delta \boldsymbol{g}^{(0)} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$$

Thus,

$$(\boldsymbol{H}_{0}\Delta\boldsymbol{g}^{(0)})(\boldsymbol{H}_{0}\Delta\boldsymbol{g}^{(0)})^{T} = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix} \qquad \Delta\boldsymbol{g}^{(0)T}\boldsymbol{H}_{0}\Delta\boldsymbol{g}^{(0)} = 4$$

Example $\boldsymbol{H}_{1} = \boldsymbol{H}_{0} + \frac{\Delta \boldsymbol{x}^{(0)} \Delta \boldsymbol{x}^{(0)T}}{\Delta \boldsymbol{x}^{(0)T} \wedge \boldsymbol{a}^{(0)}} - \frac{[\boldsymbol{H}_{0} \Delta \boldsymbol{g}^{(0)}][\boldsymbol{H}_{0} \Delta \boldsymbol{g}^{(0)}]^{T}}{\Delta \boldsymbol{a}^{(0)T} \boldsymbol{H}_{0} \Delta \boldsymbol{a}^{(0)}}$ $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} - \frac{1}{4} \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -1 & 3 \end{bmatrix}$ • We now compute $d^{(1)} = -H_1 g^{(1)} = [0, 1]^T$ and $\alpha_1 = \arg\min_{\alpha \ge 0} f(\boldsymbol{x}^{(1)} + \alpha \boldsymbol{d}^{(1)}) = -\frac{\boldsymbol{g}^{(1)T} \boldsymbol{d}^{(1)}}{\boldsymbol{d}^{(1)T} \boldsymbol{O} \boldsymbol{d}^{(1)}} = \frac{1}{2}$ Hence, $x^{(2)} = x^{(1)} + \alpha_0 d^{(1)} = [-1, 3/2]^T = x^*$, because f is a quadratic function of two variables. • Note that we have $d^{(0)T}Qd^{(1)} = d^{(1)T}Qd^{(0)} = 0$; that is, $d^{(0)}$ and $d^{(1)}$ are *Q*-conjugate directions.

The DFP Algorithm

- The DFP algorithm is superior to the rank one algorithm in that it preserves the positive definiteness of *H_k*.
- However, it turns out that in the case of larger nonquadratic problems the algorithm has the tendency of sometimes getting stuck. This phenomenon is attributed to *H_k* becoming nearly singular.

- Suggested by Broyden, Fletcher, Goldfarb, and Shanno.
- Recall that the updating formulas for the approximation of the inverse of the Hessian matrix were based on satisfying the equations

 $\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}^{(i)} = \Delta \boldsymbol{x}^{(i)} \qquad 0 \leq i \leq k$

which were derived from $\Delta g^{(i)} = Q \Delta x^{(i)}$, $0 \le i \le k$. We then formulated update formulas for the approximations to the inverse of the Hessian matrix Q^{-1} .

• An alternative to approximating Q^{-1} is to approximate Q itself.

- Let B_k be our estimate of Q at the *k*th step. We require B_{k+1} to satisfy $\Delta g^{(i)} = B_{k+1} \Delta x^{(i)}$, $0 \le i \le k$.
- Notice that this set of equations is similar to the previous set of equations for *H*_{k+1}, the only difference being that the roles of ∆*x*⁽ⁱ⁾ and ∆*g*⁽ⁱ⁾ are interchanged.
- Given any update formula for *H_k*, a corresponding update formula for *B_k* can be found by interchanging the roles of *B_k* and *H_k* and of △*g*^(k) and △*x*^(k). In particular, the BFGS update for *B_k* corresponds to the DFP update for *H_k*. Formulas related in this way are said to be *dual* or *complementary*.

Recall that the DFP update for the approximation H_k of the inverse Hessian is

 $\boldsymbol{H}_{k+1}^{DFP} = \boldsymbol{H}_{k} + \frac{\Delta \boldsymbol{x}^{(k)} \Delta \boldsymbol{x}^{(k)T}}{\Delta \boldsymbol{x}^{(k)T} \Delta \boldsymbol{g}^{(k)}} - \frac{[\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}][\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}]^{T}}{\Delta \boldsymbol{g}^{(k)T} \boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}}$

• Using the complementarity concept, we can easily obtain an update equation for the approximation B_k of the Hessian

$$\boldsymbol{B}_{k+1} = \boldsymbol{B}_k + \frac{\Delta \boldsymbol{g}^{(k)} \Delta \boldsymbol{g}^{(k)T}}{\Delta \boldsymbol{g}^{(k)T} \Delta \boldsymbol{x}^{(k)}} - \frac{[\boldsymbol{B}_k \Delta \boldsymbol{x}^{(k)}][\boldsymbol{B}_k \Delta \boldsymbol{x}^{(k)}]^T}{\Delta \boldsymbol{x}^{(k)T} \boldsymbol{B}_k \Delta \boldsymbol{x}^{(k)}}$$

To obtain the BFGS update for the approximation of the inverse Hessian, we take the inverse of B_{k+1} to obtain
 H^{BFGS}_{k+1} = (B_{k+1})⁻¹
 = (B_k + \frac{\Delta g^{(k)} \Delta g^{(k)T}}{\Delta a^{(k)T} \Delta x^{(k)}} - \frac{[B_k \Delta x^{(k)}][B_k \Delta x^{(k)}]^T}{\Delta x^{(k)T} B_k \Delta x^{(k)}} \begin{pmatrix}{l} -1 \\ \Delta x^{(k)T} B_k \Delta x^{(k)} - \frac{[B_k \Delta x^{(k)}][B_k \Delta x^{(k)}]^T}{\Delta x^{(k)T} B_k \Delta x^{(k)}} \begin{pmatrix}{l} -1 \\ \Delta x^{(k)T} B_k \Delta x^{(k)} - \frac{[B_k \Delta x^{(k)}][B_k \Delta x^{(k)}]^T}{\Delta x^{(k)T} B_k \Delta x^{(k)}} \begin{pmatrix}{l} -1 \\ \Delta x^{(k)T} B_k \Delta x^{(k)} - \frac{[B_k \Delta x^{(k)}][B_k \Delta x^{(k)}]^T}{\Delta x^{(k)T} B_k \Delta x^{(k)}} \begin{pmatrix}{l} -1 \\ \Delta x^{(k)T} B_k \Delta x^{(k)} - \frac{[B_k \Delta x^{(k)}][B_k \Delta x^{(k)}]^T}{\Delta x^{(k)T} B_k \Delta x^{(k)}} \begin{pmatrix}{l} -1 \\ \Delta x^{(k)T} B_k (B_k - B_k - B_k

Lemma 11.1 Sherman-Morrison formula: Let A be a nonsingular matrix. Let u and v be column vectors such that 1+v^TAu ≠ 0. Then, A + uv^T is nonsingular, and its inverse can be written in terms of A⁻¹ using the following formula:

$$(A + uv^{T})^{-1} = A^{-1} - \frac{(A^{-1}u)(v^{T}A^{-1})}{1 + v^{T}A^{-1}u}$$

From Lemma 11.1 it follows that if A⁻¹ is known, then the inverse of the matrix A augmented by a rank one matrix can be obtained by a modification of the matrix A⁻¹.

- Applying Lemma 11.1 twice to \boldsymbol{B}_{k+1} yields $\boldsymbol{H}_{k+1}^{BFGS} = \boldsymbol{H}_{k} + \left(1 + \frac{\Delta \boldsymbol{g}^{(k)T} \boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}}{\Delta \boldsymbol{g}^{(k)T} \Delta \boldsymbol{x}^{(k)}}\right) \frac{\Delta \boldsymbol{x}^{(k)} \Delta \boldsymbol{x}^{(k)T}}{\Delta \boldsymbol{x}^{(k)T} \Delta \boldsymbol{g}^{(k)}} - \frac{\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)} \Delta \boldsymbol{x}^{(k)T} + (\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)} \Delta \boldsymbol{x}^{(k)T})^{T}}{\Delta \boldsymbol{g}^{(k)T} \Delta \boldsymbol{x}^{(k)}}$
- Recall that for the quadratic case the DFP algorithm satisfies $H_{k+1}^{DFP} \Delta g^{(i)} = x^{(i)}, 0 \le i \le k$. Therefore, the BFGS update for B_k satisfies $B_{k+1} \Delta x^{(i)} = g^{(i)}, 0 \le i \le k$. By construction of the BFGS formula for H_{k+1}^{BFGS} , we conclude that $H_{k+1}^{BFGS} \Delta g^{(i)} = \Delta x^{(i)}, 0 \le i \le k$ Hence, the BFGS algorithm enjoys all the properties of quasi-Newton methods, including the conjugate directions property. Moreover, the BFGS algorithm also inherits the positive definiteness property of the DFP algorithm; that is, if $g^{(k)} \ne 0$ and $H_k > 0$, then $H_{k+1}^{BFGS} > 0$

- The BFGS formula is often far more efficient than the DFP formula.
- Use the BFGS method to minimize $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{Q}\mathbf{x} \mathbf{x}^T \mathbf{b} + \log(\pi)$ $\mathbf{Q} = \begin{bmatrix} 5 & -3 \\ -3 & 2 \end{bmatrix}$ $\mathbf{b} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- Take $\boldsymbol{H}_0 = \boldsymbol{I}_2$ and $\boldsymbol{x}_0 = [0, 0]^T$. Verify that $\boldsymbol{H}_2 = \boldsymbol{Q}^{-1}$.
- We have $d^{(0)} = -g^{(0)} = -(Qx^{(0)} b) = b = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

The objective function is a quadratic, and hence we can use the following formula to compute α_0

$$\alpha_0 = -\frac{\boldsymbol{g}^{(0)T} \boldsymbol{d}^{(0)}}{\boldsymbol{d}^{(0)T} \boldsymbol{Q} \boldsymbol{d}^{(0)}} = \frac{1}{2}$$

• Therefore,
$$\boldsymbol{x}^{(1)} = \boldsymbol{x}^{(0)} + \alpha_0 \boldsymbol{d}^{(0)} = \begin{bmatrix} 0 \\ 1/2 \end{bmatrix}$$

To compute $H_1 = H_1^{BFGS}$, we need the following quantities:

$$\Delta \boldsymbol{x}^{(0)} = \boldsymbol{x}^{(1)} - \boldsymbol{x}^{(0)} = \begin{bmatrix} 0\\1/2 \end{bmatrix}$$
$$\boldsymbol{g}^{(1)} = \boldsymbol{Q}\boldsymbol{x}^{(1)} - \boldsymbol{b} = \begin{bmatrix} -3/2\\0 \end{bmatrix}$$
$$\Delta \boldsymbol{g}^{(0)} = \boldsymbol{g}^{(1)} - \boldsymbol{g}^{(0)} = \begin{bmatrix} -3/2\\1 \end{bmatrix}$$

Therefore,

$$\boldsymbol{H}_{1} = \boldsymbol{H}_{0} + \left(1 + \frac{\Delta \boldsymbol{g}^{(0)T} \boldsymbol{H}_{0} \Delta \boldsymbol{g}^{(0)}}{\Delta \boldsymbol{g}^{(0)T} \Delta \boldsymbol{x}^{(0)}}\right) \frac{\Delta \boldsymbol{x}^{(0)} \Delta \boldsymbol{x}^{(0)T}}{\Delta \boldsymbol{x}^{(0)T} \Delta \boldsymbol{g}^{(0)}} \\ - \frac{\Delta \boldsymbol{x}^{(0)} \Delta \boldsymbol{g}^{(0)T} \boldsymbol{H}_{0} + \boldsymbol{H}_{0} \Delta \boldsymbol{g}^{(0)} \Delta \boldsymbol{x}^{(0)T}}{\Delta \boldsymbol{g}^{(0)T} \Delta \boldsymbol{x}^{(0)}} = \begin{bmatrix}1 & 3/2\\3/2 & 11/4\end{bmatrix}$$

- Hence, we have $d^{(1)} = -H_1 g^{(1)} = \begin{bmatrix} 3/2 \\ 9/4 \end{bmatrix}$ $\alpha_1 = -\frac{g^{(1)T} d^{(1)}}{d^{(1)T} Q d^{(1)}} = 2$ Therefore, $x^{(2)} = x^{(1)} + \alpha_1 d^{(1)} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$
- Because our objective function is a quadratic on R², x⁽²⁾ is the minimizer. Notice that the gradient at x⁽²⁾ is 0; that is, g⁽²⁾ = 0

• To verify that $H_2 = Q^{-1}$, we compute $\Delta x^{(1)} = x^{(2)} - x^{(1)} = \begin{bmatrix} 3\\ 9/2 \end{bmatrix}$ $\Delta g^{(1)} = g^{(2)} - g^{(1)} = \begin{bmatrix} 3/2\\ 0 \end{bmatrix}$ $H_2 = H_1 + \left(1 + \frac{\Delta g^{(1)T} H_1 \Delta g^{(1)}}{\Delta g^{(1)T} \Delta x^{(1)}}\right) \frac{\Delta x^{(1)} \Delta x^{(1)T}}{\Delta x^{(1)T} \Delta g^{(1)}}$ $- \frac{\Delta x^{(1)} \Delta g^{(1)T} H_1 + H_1 \Delta g^{(1)} \Delta x^{(1)T}}{\Delta g^{(1)T} \Delta x^{(1)}} = \begin{bmatrix} 2 & 3\\ 3 & 5 \end{bmatrix}$

 \implies $H_2Q = QH_2 = I_2 \implies$ $H_2 = Q^{-1}$